JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) PULIVENDULA

19ABS25-OPTIMIZATION TECHNIQUES

(Open Elective -II)

L T P C 3 0 0 3

Course Objectives: This course aims at providing the student

- With the basic concepts and several methods of optimization.
- With the concepts of geometric programming & constrained minimization problems.

UNIT - 1: Linear programming I: Simplex Method

9 Hrs

Introduction, Applications of Linear Programming, Standard form of a Linear Programming Problem, Geometry of Linear Programming Problems, Basic Definitions in Linear Programming. Simplex Method, Simplex Algorithm and Two phase Simplex Method.

Learning Outcomes:

At the end of this unit, the student will be able to

• Solve the problems related to linear programming.

L3

• Lear the simplex method and two phase simplex method.

L3

UNIT - II: Linear programming II: Duality in Linear Programming

Symmetric Primal-Dual Relations, General Primal-Dual Relations, Duality Theorem, Dual Simplex Method, Transportation Problem and assignment problem.

Learning Outcomes:

At the end of this unit, the student will be able to

Understand the dual relations and duality theorem

L2

• Solve transportation problem and assignment problem.

L4

UNIT – III: Non-linear programming: Unconstrained optimization techniques & Direct Search Methods Non-linear programming: Unconstrained optimization techniques: Introduction: Classification of Unconstrained minimization methods

Direct Search Methods: Random Search Methods: Random jumping Method, Random Walk method. Grid Search Method.

Learning Outcomes:

At the end of this unit, the student will be able to

• Classify Unconstrained minimization methods and direct search methods.

L2

• Apply the unconstrained minimization methods and direct search methods

L3

UNIT - IV: Non-linear programming: Constrained optimization techniques

Introduction, Characteristics of a constrained problem, Random Search Methods, complex method, Sequential linear programming, Basic approach in methods of Feasible directions, Zoutendijk's method of feasible directions: direction finding problem, determination of step length, Termination criteria.

Learning Outcomes:

At the end of this unit, the student will be able to

• Understand the Constrained optimization techniques.

L2

• Solve nonlinear programming problems.

L3

UNIT – V: Geometric Programming & Constrained minimization Problems

Geometric Programming:

Unconstrained Minimization Problems: solution of unconstrained geometric programming using differential calculus and arithmetic-geometric inequality.

Constrained minimization Problems:

Solution of a constrained geometric programming problem, primal-dual programming in case of less-than inequalities, geometric programming with mixed inequality constraints.

Merry

Department of Mathematics	R19
Learning Outcomes:	
At the end of this unit, the student will be able to	
 Solve unconstrained geometric programming using differential calculus and geometric inequality. 	LJ
 Solve Solution of a constrained geometric programming problem, primal-dual pro 	ogramming. L4
Text Books:1. Singiresu S Rao., Engineering Optimization: Theory and Practices, New Age In New Delhi.	nt. (P) Ltd. Publishers,
 Reference Books: Chong, E.K.P.and Zak, S. H An Introduction to Optimization, John Wiley & So. Peressimi A.L., Sullivan F.E., Vhl, J.JMathematics of Non-linear Programming 	
Course Outcomes: At the end of this Course the student will be able to	
 Remembers the concepts of linear programming problems. 	L1
 Understand various techniques of linear programming problems. 	L2
 Solve constrained and unconstrained linear programming problems. 	L3
 Analyzes geometric programming using differential calculus and arithmetic-geometric in 	nequality. L4
 Analyze optimization problems that occur in real world in engineering and t various elegant optimization techniques. 	technology using L5
Mark	47

Page 2 of 2